PhoenixD Forschung
Publikationen

Publikationen im Rahmen des Exzellenzclusters PhoenixD

Die Forschungsleistung des Exzellenzclusters PhoenixD zeigt sich in den zahlreichen Publikationen, die seit 2019 veröffentlicht wurden. Eine kontinuierlich aktualisierte Übersicht finden Sie auf dieser Seite. In externen Publikationsportalen können Sie nach Veröffentlichungen mit der Identifikationsnummer (Project-ID) 390833453 und dem Kürzel EXC-2122 suchen.

Zeige Ergebnisse 161 - 180 von 680

2023


Wriggers, P. (2023). A locking free virtual element formulation for Timoshenko beams. Computer Methods in Applied Mechanics and Engineering, 417, Artikel 116234. Vorabveröffentlichung online. https://doi.org/10.1016/j.cma.2023.116234
Wu, D., Fedorov Kukk, A., & Roth, B. (2023). Detection of Cutaneous Melanin based on Raman Spectroscopy with Optical Coherence Tomography Localization. In R. R. Alfano, & A. B. Seddon (Hrsg.), Optical Biopsy XXI: Toward Real-Time Spectroscopic Imaging and Diagnosis Artikel 1237309 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Band 12373). SPIE. https://doi.org/10.1117/12.2648242
Wu, D., Kukk, A. F., & Roth, B. (2023). Detection of melanin influence on skin samples based on Raman spectroscopy and optical coherence tomography dual-modal approach. Journal of biophotonics, 16(8), Artikel e202300080. Vorabveröffentlichung online. https://doi.org/10.1002/jbio.202300080
Wu, D., Kukk, A. F., Emmert, S., & Roth, B. (2023). In vivo Raman Spectroscopic Study of Suspected Melanoma Skin Lesions and Healthy Skin. In Z. Huang, & L. D. Lilge (Hrsg.), Translational Biophotonics: Diagnostics and Therapeutics III Artikel 1262704 (Proceedings of SPIE - The International Society for Optical Engineering; Band 12627). SPIE. https://doi.org/10.1117/12.2670621
Wu, J., Grabe, T., Götz, J-L., Trapp, J., Souza, A. S. D., Biermann, T., Wolf, A., Ley, P-P., Duan, K., Lachmayer, R., & Ren, W. (2023). Linear scalability of dense-pattern Herriott-type multipass cell design. Applied Physics B: Lasers and Optics, 129(6), Artikel 87. https://doi.org/10.1007/s00340-023-08031-w
Wu, Y., Zhang, C., Wang, C., Rabczuk, T., Zhu, P., Zhao, P., Wang, L., Zhuang, X., Zhang, J., & Fang, H. (2023). The micro response mechanisms of foamed polymer rehabilitation material under compression: From a closed cell view. Polymer testing, 124, Artikel 108082. Vorabveröffentlichung online. https://doi.org/10.1016/j.polymertesting.2023.108082
Wurst, K. M., Strolka, O., Hiller, J., Keck, J., Meixner, A. J., Lauth, J., & Scheele, M. (2023). Electronic Structure of Colloidal 2H-MoS2 Mono and Bilayers Determined by Spectroelectrochemistry. SMALL, 19(23), Artikel 2207101. Vorabveröffentlichung online. https://doi.org/10.1002/smll.202207101
Xia, P., Grabe, T., Biermann, T., Ziebehl, A., Teves, S., & Lachmayer, R. (2023). Tolerance Analysis and Design Optimization of Additively Manufactured Mechanical Structure for a Raman Spectrometer System. In P. Lehmann (Hrsg.), Optical Measurement Systems for Industrial Inspection XIII (Band 12618). Artikel 126181N (Proceedings of SPIE - The International Society for Optical Engineering; Band 12618). SPIE. https://doi.org/10.1117/12.2673436
Zangenehzadeh, S., Agócs, E., Jivani, H., Könemund, L., Neumann, L., Hirschberg, F., Herdan, S., Biedendieck, R., Jahn, D., Roth, B. W., Johannes, H. H., & Kowalsky, W. (2023). Bacteria detection in a Kretschmann geometry flow cell at a plasmon-enhanced interface with spectroscopic ellipsometer. THIN SOLID FILMS, 764, Artikel 139583. Vorabveröffentlichung online. https://doi.org/10.1016/j.tsf.2022.139583
Zhang, C., Zhang, Y., Xia, Y., Fang, H., Zhao, P., Wang, C., Bin Li, L., Pan, Y., Zou, Z., Rabczuk, T., & Zhuang, X. (2023). Risk assessment and optimization of supporting structure for a new recyclable pipe jacking shaft during excavation process. Process Safety and Environmental Protection, 172, 211-224. Vorabveröffentlichung online. https://doi.org/10.1016/j.psep.2023.02.024
Zhao, M., Tao, Y., Weber, K., Kaune, T., Schuster, S., Hao, Z., & Wanner, G. (2023). Method Comparison for Simulating Non-Gaussian Beams and Diffraction for Precision Interferometry. Sensors, 23(22), Artikel 9024. https://doi.org/10.3390/s23229024
Zheng, L., Birr, T., Zywietz, U., Reinhardt, C., & Roth, B. (2023). Feature size below 100 nm realized by UV-LED- based microscope projection photolithography. Light: Advanced Manufacturing, 4(4), 1-10. Vorabveröffentlichung online. https://doi.org/10.37188/lam.2023.033
Zheng, L., Günther, A., Caspary, R., Kowalsky, W., & Roth, B. (2023). Integration of UV-nanoimprint lithography with two-photon polymerization for scalable production. In G. von Freymann, E. Blasco, & D. Chanda (Hrsg.), Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVI Artikel 124330G (Proceedings of SPIE - The International Society for Optical Engineering; Band 12433). SPIE. https://doi.org/10.1117/12.2648030
Zheng, L., Reinhardt, C., & Roth, B. (2023). Microscope Projection Photolithography-Enabled Structuring with Subwavelength Resolution. In 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference: CLEO/Europe-EQEC Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CLEO/EUROPE-EQEC57999.2023.10231498
Zheng, L., Reinhardt, C., & Roth, B. (2023). Optical and Plasmonic Devices Realized by UV-LED-Based Projection Photolithography. In 2023 Opto-Electronics and Communications Conference (OECC) Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/OECC56963.2023.10209806
Zheng, L., Reinhardt, C., & Roth, B. (2023). Sub-100 nm feature sizes realized by cost-effective microscope projection photolithography. In G. von Freymann, E. Blasco, & D. Chanda (Hrsg.), Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVI Artikel 124330B (Proceedings of SPIE - The International Society for Optical Engineering; Band 12433). SPIE. https://doi.org/10.1117/12.2648032
Zheng, L., Reinhardt, C., & Roth, B. (2023). UV-LED-based projection lithography for rapid high-resolution micro- and nanostructuring. In B. Panchapakesan, A-J. Attias, A-J. Attias, & W. Park (Hrsg.), Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XX Artikel 1265305 (Proceedings of SPIE - The International Society for Optical Engineering; Band 12653). SPIE. https://doi.org/10.1117/12.2677495
Ziebehl, A., Grabe, T., Biermann, T., Xia, P., Teves, S., & Lachmayer, R. (2023). Parametric multiphysics study of focus-variable silicone lenses. Applied optics, 62(30), 7895-7903. Vorabveröffentlichung online. https://doi.org/10.1364/AO.499811
Zuber, D., Kleinert, S., Tajalli, A., Steinecke, M., Jupé, M., Babushkin, I., Ristau, D., & Morgner, U. (2023). Third and fifth order nonlinear susceptibilities in thin HfO2 layers. Optics express, 31(12), 19309-19318. Vorabveröffentlichung online. https://doi.org/10.1364/OE.486072

2022


Abdelmonem, A. M., Zámbó, D., Rusch, P., Schlosser, A., Klepzig, L. F., & Bigall, N. C. (2022). Versatile Route for Multifunctional Aerogels Including Flaxseed Mucilage and Nanocrystals. Macromolecular Rapid Communications, 43(7), Artikel 2100794. Vorabveröffentlichung online. https://doi.org/10.15488/11916, https://doi.org/10.1002/marc.202100794