PhoenixD Forschung
Publikationen

Publikationen im Rahmen des Exzellenzclusters PhoenixD

Die Forschungsleistung des Exzellenzclusters PhoenixD zeigt sich in den zahlreichen Publikationen, die seit 2019 veröffentlicht wurden. Eine kontinuierlich aktualisierte Übersicht finden Sie auf dieser Seite. In externen Publikationsportalen können Sie nach Veröffentlichungen mit der Identifikationsnummer (Project-ID) 390833453 und dem Kürzel EXC-2122 suchen.

Zeige Ergebnisse 421 - 440 von 688

2021


Mevert, R., Binhammer, Y., Dietrich, C. M., Beichert, L., Cardoso de Andrade, J. R., Binhammer, T., Fan, J., & Morgner, U. (2021). Widely tunable, high-power, femtosecond noncollinear optical parametric oscillator in the visible spectral range. Photonics research, 9(9), 1715-1718. https://doi.org/10.1364/PRJ.426107
Mortazavi, B., Podryabinkin, E. V., Novikov, I. S., Rabczuk, T., Zhuang, X., & Shapeev, A. V. (2021). Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution. Computer physics communications, 258, Artikel 107583. https://doi.org/10.1016/j.cpc.2020.107583
Mortazavi, B., Javvaji, B., Shojaei, F., Rabczuk, T., Shapeev, A. V., & Zhuang, X. (2021). Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. NANO ENERGY, 82, Artikel 105716. https://doi.org/10.1016/j.nanoen.2020.105716
Mortazavi, B., Silani, M., Podryabinkin, E. V., Rabczuk, T., Zhuang, X., & Shapeev, A. V. (2021). First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials. Advanced materials, 33(35), Artikel 2102807. https://doi.org/10.1002/adma.202102807
Mortazavi, B., Shojaei, F., Javvaji, B., Rabczuk, T., & Zhuang, X. (2021). Outstandingly high thermal conductivity, elastic modulus, carrier mobility and piezoelectricity in two-dimensional semiconducting CrC2N4: a first-principles study. Materials Today Energy, 22, Artikel 100839. https://doi.org/10.48550/arXiv.2108.12808, https://doi.org/10.1016/j.mtener.2021.100839
Mortazavi, B. (2021). Ultrahigh thermal conductivity and strength in direct-gap semiconducting graphene-like BC6N: A first-principles and classical investigation. CARBON, 182, 373-383. https://doi.org/10.48550/arXiv.2106.07090, https://doi.org/10.1016/j.carbon.2021.06.038
Müller, D., Zámbó, D., Dorfs, D., & Bigall, N. C. (2021). Cryoaerogels and Cryohydrogels as Efficient Electrocatalysts. SMALL, 17(18), Artikel 2007908. https://doi.org/10.1002/smll.202007908
Müller, D., Klepzig, L. F., Schlosser, A., Dorfs, D., & Bigall, N. C. (2021). Structural Diversity in Cryoaerogel Synthesis. LANGMUIR, 37(17), 5109-5117. https://doi.org/10.1021/acs.langmuir.0c03619
Nicolas, R., Shi, L., Chanteau, B., Franz, D., Kholodstova, M., Ripault, Q., Andrade, J. R. C., Iwan, B., Boutu, W., Kovacev, M., & Merdji, H. (2021). Plasmon-Amplified Third Harmonic Generation in Metal/Dielectric Resonators. Plasmonics, 16(6), 1883-1889. https://doi.org/10.1007/s11468-021-01444-3
Noii, N., Khodadadian, A., & Wick, T. (2021). Bayesian inversion for anisotropic hydraulic phase-field fracture. Computer Methods in Applied Mechanics and Engineering, 386, Artikel 114118. https://doi.org/10.1016/j.cma.2021.114118
Noii, N., Khodadadian, A., Ulloa, J., Aldakheel, F., Wick, T., François, S., & Wriggers, P. (2021). Bayesian inversion for unified ductile phase-field fracture. Computational mechanics, 68(4), 943-980. https://doi.org/10.1007/s00466-021-02054-w
Parvizi, M., Khodadadian, A., & Eslahchi, M. R. (2021). A mixed finite element method for solving coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Mathematical Methods in the Applied Sciences, 44(17), 12500-12521. https://doi.org/10.1002/mma.7556
Paul, S., Schwartau, F., Krueckemeier, M., Caspary, R., Monka-Ewe, C., Schoebel, J., & Kowalsky, W. (2021). A Systematic Comparison of Near-Field Beamforming and Fourier-Based Backward-Wave Holographic Imaging. IEEE Open Journal of Antennas and Propagation, 2, 921-931. https://doi.org/10.1109/OJAP.2021.3107444
Perevoznik, D., Bose, S., Burger, S., Demircan, A., & Morgner, U. (2021). Photonic components in polymers made by femtosecond pulses. In 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021 Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9541906
Perevoznik, D., Bose, S., Burger, S., Demircan, A., & Morgner, U. (2021). Writing photonic components in polymers using femtosecond pulses. In CLEO: Applications and Technology 2021 Artikel ATh4P.4 OSA - The Optical Society. https://opg.optica.org/abstract.cfm?uri=CLEO_AT-2021-ATh4P.4
Perevoznik, D., Bose, S., Burger, S., Demircan, A., & Morgner, U. (2021). Writing Photonic Components in Polymers Using Femtosecond Pulses. In 2021 Conference on Lasers and Electro-Optics: CLEO 2021 - Proceedings Institute of Electrical and Electronics Engineers Inc.. https://ieeexplore.ieee.org/document/9572038
Pflieger, K., Reitz, B., Hoffmann, G. A., & Overmeyer, L. (2021). Layout optimization for flexographically printed optical networks. Applied optics, 60(31), 9828-9836. https://doi.org/10.1364/AO.420358
Poleva, M., Baryshnikova, K. V., Frizyuk, K., & Evlyukhin, A. B. (2021). Nontrivial optical response of silicon triangular prisms. Journal of Physics: Conference Series, 2015(1), Artikel 012111. https://doi.org/10.15488/14421, https://doi.org/10.1088/1742-6596/2015/1/012111
Ramirez, N., Zámbó, D., Sardella, F., Kißling, P. A., Schlosser, A., Graf, R. T., Pluta, D., Deiana, C., & Bigall, N. C. (2021). Pd-Doped Cellulose Carbon Aerogels for Energy Storage Applications. Advanced Materials Interfaces, 8(12), Artikel 2100310. https://doi.org/10.1002/admi.202100310
Ramirez y Medina, I.-M., Rohdenburg, M., Rusch, P., Duvinage, D., Bigall, N. C., & Staubitz, A. (2021). π-Conjugated stannole copolymers synthesised by a tin-selective Stille cross-coupling reaction. Materials Advances, 2(10), 3282-3293. https://doi.org/10.1039/d1ma00104c