Optical Bend Sensor Based on Eccentrically Micro-Structured Multimode Polymer Optical Fibers

verfasst von
Lennart Leffers, Julia Locmelis, Kort Bremer, Bernhard Roth, Ludger Overmeyer
Abstract

We report on a novel bend sensor with high flexibility and elasticity based on Bragg grating structures in polymer optical fibers to detect bending for the measurement of movement. The concept is very simple and relies on the inscription of eccentrical Bragg gratings into multimode graded-index polymer optical fibers via contact exposure with a krypton fluoride excimer laser in the ultraviolet region and an optimized phase mask. Depending on the fiber deformation, the lattice constant of the inscribed Bragg grating is strained or compressed due to its position relative to the fiber core. This in turn results in a specific shift of the Bragg wavelength of up to 1.3 nm to the red or blue wavelength region, respectively, which is sufficiently large to be reliably detected. Therefore, as proof of principle, deformation along one axis can be observed with a single Bragg grating with a maximum sensitivity of up to 65 pm/m-1. Moreover, multiple Bragg gratings inscribed into the same polymer optical fiber at different positions around the fiber axis allow to determine the shape deformation of the fiber relative to a reference frame with similar accuracy. Consequently, this technology could form the basis for new applications in the areas of medical diagnostics, robotics or augmented reality, which are lacking affordable sensor systems to date.

Organisationseinheit(en)
Hannoversches Zentrum für Optische Technologien (HOT)
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Institut für Transport- und Automatisierungstechnik
Typ
Artikel
Journal
IEEE photonics journal
Band
13
ISSN
1943-0655
Publikationsdatum
09.09.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1109/JPHOT.2021.3111298 (Zugang: Offen)