AboutNews
Forschende finden neuen Multiphotoneneffekt bei der Quanteninterferenz von Licht

Researchers find new multiphoton effect within quantum interference of light

© IOP
Artistic representation of quantum interference between a thermal state and a heralded parametric single-photon state.

An international team of researchers from Leibniz University Hannover (Germany) and the University of Strathclyde in Glasgow (United Kingdom) has disproved a previously held assumption about the impact of multiphoton components in interference effects of thermal fields (e.g. sunlight) and parametric single photons (generated in non-linear crystals). The finding offers new starting points for research into photonic quantum information systems.

"We experimentally proved that the interference effect between thermal light and parametric single photons also leads to quantum interference with the background field. For this reason, the background cannot simply be neglected and subtracted from calculations, as has been the case up to now," says Prof. Dr. Michael Kues, Head of the Institute of Photonics and member of the Board of the PhoenixD Cluster of Excellence at Leibniz University Hannover.

The leading scientist was PhD student Anahita Khodadad Kashi, who performs research on photonic quantum information processing at the Institute of Photonics. She investigated how the visibility of the so-called Hong-Ou-Mandel effect, a quantum interference effect, is affected by multiphoton contamination. "With our experiment, we have disproved the previously valid assumption that multiphoton components would only impair visibility and can therefore be subtracted in the calculation," says Khodadad Kashi and continues: "We have discovered a new fundamental characteristic that was not considered in previous calculations. Our newly developed model can predict the quantum interference and we can measure this effect in an experiment."

How new knowledge is created

The scientists came across their discovery while carrying out an experiment in the laser laboratory. They obtained a negative result when they initially followed the original calculation method. "But the result would have been physically impossible," says Khodadad Kashi. Together, the team began troubleshooting the experimental setup and the calculation model.

"When an experiment turns out very different from what is expected, scientists start questioning previous assumptions and look for new explanations," says Kues. They jointly developed their new theory of quantum interference of thermal fields with parametric single photons. Quantum researcher Lucia Caspani from the University of Strathclyde in Glasgow was the first to test the approach. As the next step, Khodadad Kashi presented her theory and the experimental results at international conferences, including Photonics West in San Francisco, the world's largest specialist conference for optics and photonics, attracting around 22,000 participants. There, she discussed her model with other scientists and received confirmation of her results. The journal Physical Review Letters has now published the team's research.

With the new theory and the experimental verification, Kues' team has made an important contribution to a better understanding of quantum phenomena. “The findings could be important for quantum key distribution, which is necessary for secure communications in the future, specifically how quantum interference effects are interpreted for the generation of secret keys,” says Khodadad Kashi. However, many questions remain unanswered, says Kues: "Little research has been done into multiphoton effects, so a lot of work is still needed."

The research was supported by the European Research Council within the Starting-Grant-Project QFreC.

Prof. Dr. Michael Kues is head of the Institute of Photonics and a board member of the Cluster of Excellence PhoenixD: Photonics, Optics, and Engineering - Innovation across Disciplines at Leibniz University Hannover, Germany. The PhoenixD research cluster comprises around 120 scientists working on novel integrated optics. The German Research Foundation (DFG) funds PhoenixD with about 52 million euros from 2019 to 2025.

Original article

Anahita Khodadad Kashi, Lucia Caspani, and Michael Kues
Spectral Hong-Ou-Mandel Effect between a Heralded Single-Photon State and a Thermal Field: Multiphoton Contamination and the Nonclassicality Threshold
Physical Review Letters 131, 233601 


https://doi.org/10.1103/PhysRevLett.131.233601

Note to Editors:
For further information, please contact Prof. Dr. Michael Kues (phone: +49 511 762 3539; email: michael.kues@iop.uni-hannover.de) and visit www.iop.uni-hannover.de and www.phoenixd.uni-hannover.de.

You can download the illustration above in print resolution here. Please use IOP as copyright information.

 

Führende Wissenschaftlerin war Doktorandin Anahita Khodadad Kashi, die am Institut für Photonik zur photonischen Quanteninformationsverarbeitung forscht. Dabei untersuchte sie, wie die Sichtbarkeit des sogenannten Hong-Ou-Mandel-Effektes, ein Quanteninterferenz-Effekte, durch Multiphotonen-Kontaminationen beeinträchtigt wird. „Mit unserem Experiment haben wir die bislang gültige Annahme widerlegt, dass Multiphotonen-Komponenten die Sichtbarkeit ausschließlich verschlechtern würden und daher in der Berechnung abgezogen werden können“, sagt Khodadad Kashi und fährt fort: „Wir haben eine neue fundamentale Charakteristik entdeckt, die in den bisherigen Berechnungen nicht berücksichtigt wurde. Mit unserem neu entwickelten Modell können wir die Quanteninterferenz vorhersagen und den Effekt im Experiment auch messen.“

Wie neues Wissen entsteht

Auf seine Entdeckung stieß das Team bei der Durchführung eines Experimentes im Laserlabor. Als die Forschenden zunächst der ursprünglichen Berechnungsweise gefolgt seien, hätten sie ein negatives Ergebnis erhalten. „Aber das Ergebnis wäre physikalisch unmöglich gewesen“, erzählt Khodadad Kashi. Gemeinsam begab sich das Team auf Fehlersuche beim Versuchsaufbau und beim Berechnungsmodell.

„Wenn ein Experiment so anders verläuft als erwartet, fangen Wissenschaftler an, bisherige Annahmen zu hinterfragen und neue Erklärungsmuster zu suchen“, sagt Kues. So entwickelten die Forschenden zusammen ihre neue Theorie der Quanteninterferenzen von thermischen Feldern mit parametrischen Einzelphotonen. Als Erste prüfte die Quantenforscherin Lucia Caspani von der University of Strathclyde in Glasgow den Ansatz. In einem nächsten Schritt präsentierte Khodadad Kashi ihre Theorie und die experimentellen Ergebnisse auf internationalen Konferenzen, u.a. auf der Photonics West in San Francisco, der weltgrößten Fachkonferenz für Optik und Photonik mit rund 22.000 Teilnehmenden. Dort diskutierte sie ihr Modell mit anderen Wissenschaftlerinnen und Wissenschaftlern und erhielt Bestätigung für ihre Resultate. Nun wurden die Ergebnisse in der Fachzeitschrift Physical Review Letters veröffentlicht.

Kues‘ Team hat mit der neuen Theorie und der experimentellen Verifikation einen wichtigen Beitrag zum besseren Verständnis von Quantenphänomenen geliefert. „Die Erkenntnisse könnten künftig Auswirkungen bei der Quantenschlüsselverteilung haben, wie sie für die sichere Kommunikation in der Zukunft notwendig ist, im speziellen wie Quanteninterferenzeffekte interpretiert werden, um geheime Schlüssel zu erzeugen“, sagt Khodadad Kashi. Doch es seien noch viele Fragen ungeklärt, sagt Kues: „Die Multiphotoneneffekte sind bislang noch wenig erforscht, da ist noch viel Arbeit nötig.“

Die Forschung wurde durch den Europäischen Forschungsrat mittels eines ERC-Starting-Grants (Projekt: QFreC) gefördert.

Prof. Dr. Michael Kues ist Leiter des Instituts für Photonik und Vorstandsmitglied des Exzellenzclusters PhoenixD: Photonics, Optics, and Engineering - Innovation across Disciplines an der Leibniz Universität Hannover. Der Forschungscluster PhoenixD umfasst mehr als 120 Wissenschaftlerinnen und Wissenschaftler, die an neuartigen integrierten Optiken arbeiten. PhoenixD wird von 2019 bis 2025 mit rund 52 Millionen Euro von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Originalartikel:

Anahita Khodadad Kashi, Lucia Caspani, and Michael Kues
Spectral Hong-Ou-Mandel Effect between a Heralded Single-Photon State and a Thermal Field: Multiphoton Contamination and the Nonclassicality Threshold
Physical Review Letters 131, 233601 


https://doi.org/10.1103/PhysRevLett.131.233601
 

Hinweise für Redaktionen:

Für weitere Informationen kontaktieren Sie bitte Prof. Dr. Michael Kues, (Telefon +49 511 762 3539, E-Mail: michael.kues@iop.uni-hannover.de) und besuchen Sie www.iop.uni-hannover.de und www.phoenixd.uni-hannover.de.

Die oben abgebildete Illustration können Sie hier in Druckauflösung herunterladen. Bitte verwenden Sie als Copyrightangabe IOP.