Rotative printing processes for polymer waveguide manufacturing

authored by
A. Evertz, L. Fütterer, A. L. Fritze, B. Reitz, L. Overmeyer

Rotative printing technologies are an approach to manufacturing polymer optical waveguides with high throughput for applications such as electro-optical circuit boards (EOCB) or smart packaging. Processes presumably originating in graphical applications apply defined amounts of polymer onto a polymer substrate. Unlike graphical printing, the use of these processes to manufacture functional waveguides underlies different requirements regarding material transfer, structure of the printed polymer, and multi-layer stacking of functional layers. This work applies the manufacturing processes gravure printing and flexographic printing to realize waveguide cores onto PMMA substrates. Therefore, a modular printing machine with high positional accuracy between multiple printed layers is used. The waveguides are further cladded with another PMMA substrate using thermal lamination. The processes are evaluated according to waveguide geometry and optical parameters. Material transfer per layer, resulting geometrical quality, and aspect ratio of the waveguides are compared regarding their manufacturing process. Functional tests are conducted as optical attenuation measurements to evaluate the waveguide's macro range performance. Using these results, the potentials of each process for an upcoming production of fully-printed cladded waveguides are determined and showcased.

Institute of Transport and Automation Technology
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
Conference contribution
No. of pages
Publication date
Publication status
Peer reviewed
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Condensed Matter Physics, Computer Science Applications, Applied Mathematics, Electrical and Electronic Engineering
Electronic version(s) (Access: Closed)