Three-dimensional nanothermometry below the diffraction limit

authored by
J. Thiem, S. Spelthann, J. Neumann, A. Ruehl, D. Ristau
Abstract

Lanthanide-doped nanothermometers are used to measure temperature through changes in their emission characteristic with sensitivities of up to a few %/K. In contrast to their sensitivity, their spatial resolution, which is of critical importance for various applications, has not been thoroughly studied and optimized. We numerically investigated the improvement in spatial resolution of nanothermometers with a stimulated emission depletion microscopy approach. Fundamental relationships between spatial and temperature resolution were identified by using different beam parameters for the excitation and depletion beams. Our simulations predict contactless temperature measurement below the diffraction limit with temperature resolution of ±1.25 K. We further studied the influence of sample thickness and position on both temperature and spatial resolution and showed the potential of three-dimensional measurements.

Organisation(s)
Institute of Quantum Optics
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
External Organisation(s)
Laser Zentrum Hannover e.V. (LZH)
QUANOMET: Research area quantum and nanometrology of the research alliance Braunschweig-Hannover
Type
Article
Journal
Optics letters
Volume
46
Pages
3352-3355
No. of pages
4
ISSN
0146-9592
Publication date
15.07.2021
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Atomic and Molecular Physics, and Optics
Electronic version(s)
https://doi.org/10.1364/OL.423626 (Access: Closed)