PhoenixD Research
List of Publications

Publications in the Framework of the Cluster of Excellence PhoenixD

The research performance of the PhoenixD Cluster of Excellence is reflected in the numerous publications that have been published since 2019. A continuously updated overview can be found on this page. You can search for publications in external publication platforms with the identification number (Project ID) 390833453 and EXC-2122.

Showing results 681 - 700 out of 817

2020


Schröder, J., & Wick, T. (2020). Preface GAMM Mitteilungen. GAMM Mitteilungen, 43(2), Article e202000010. https://doi.org/10.1002/gamm.202000010
Schröder, J., & Wick, T. (2020). Preface GAMM Mitteilungen. GAMM Mitteilungen, 43(1), Article e202000006. https://doi.org/10.1002/gamm.202000006
Shi, L., Evlyukhin, A. B., Reinhardt, C., Babushkin, I., Zenin, V. A., Burger, S., Malureanu, R., Chichkov, B. N., Morgner, U., & Kovacev, M. (2020). Progressive Self-Boosting Anapole-Enhanced Deep-Ultraviolet Third Harmonic during Few-Cycle Laser Radiation. ACS PHOTONICS, 7(7), 1655-1661. https://doi.org/10.1021/acsphotonics.0c00753
Shojaei, F., Mortazavi, B., Zhuang, X., & Azizi, M. (2020). Silicon diphosphide (SiP2) and silicon diarsenide (SiAs2): Novel stable 2D semiconductors with high carrier mobilities, promising for water splitting photocatalysts. Materials Today Energy, 16, Article 100377. https://doi.org/10.1016/j.mtener.2019.100377
Spelthann, S., Unland, S., Thiem, J., Jakobs, F., Kielhorn, J., Ang, P. Y., Johannes, H. H., Kracht, D., Neumann, J., Rühl, A., Kowalsky, W., & Ristau, D. (2020). Towards highly efficient polymer fiber laser sources for integrated photonic sensors. Sensors (Switzerland), 20(15), Article 4086. https://doi.org/10.3390/s20154086
Steinecke, M., Badorreck, H., Jupé, M., Willemsen, T., Hao, L., Jensen, L., & Ristau, D. (2020). Quantizing nanolaminates as versatile materials for optical interference coatings. Applied optics, 59(5), A236-A241. https://doi.org/10.1364/AO.379131
Suar, M., Baran, M., Günther, A., & Roth, B. (2020). Combined thermomechanical and optical simulations of planar-optical polymer waveguides. Journal of Optics, 22(12), Article 125801. https://doi.org/10.1088/2040-8986/abc087
Tailliez, C., Stathopulos, A., Skupin, S., Buožius, D., Babushkin, I., Vaičaitis, V., & Bergé, L. (2020). Terahertz pulse generation by two-color laser fields with circular polarization. New journal of physics, 22(10), Article 103038. https://doi.org/10.1088/1367-2630/abb863
Tamulienė, V., Juškevičiūtė, G., Buožius, D., Vaičaitis, V., Babushkin, I., & Morgner, U. (2020). Influence of tunnel ionization to third-harmonic generation of infrared femtosecond laser pulses in air. Scientific reports, 10(1), Article 17437. https://doi.org/10.1038/s41598-020-74263-x
Terekhov, P. D., Shamkhi, H. K., Gurvitz, E. A., Baryshnikova, K. V., (MIPT), M. I. O. P. A., Shalin, A. S., & Karabchevsky, A. (2020). Evolution of multipole moments in silicon nanocylinder while varying the refractive index of surrounding medium. Journal of Physics: Conference Series, 1461(1), Article 012176. https://doi.org/10.1088/1742-6596/1461/1/012176
Thiem, J., Spelthann, S., Neumann, L., Jakobs, F., Johannes, H. H., Kowalsky, W., Kracht, D., Neumann, J., Ruehl, A., & Ristau, D. (2020). Upconversion Nanocrystal Doped Polymer Fiber Thermometer. Sensors (Switzerland), 20(21), 1-13. Article 6048. https://doi.org/10.3390/s20216048
Tuz, V. R., Dmitriev, V., & Evlyukhin, A. B. (2020). Antitoroidic and Toroidic Orders in All-Dielectric Metasurfaces for Optical Near-Field Manipulation. ACS Applied Nano Materials, 3(11), 11315-11325. https://doi.org/10.1021/acsanm.0c02421
Walter, J.-G., Alwis, L. S. M., Roth, B., & Bremer, K. (2020). All-Optical Planar Polymer Waveguide-Based Biosensor Chip Designed for Smartphone-Assisted Detection of Vitamin D. Sensors (Switzerland), 20(23), Article 6771. https://doi.org/10.3390/s20236771
Walter, J.-G., Eilers, A., Alwis, L. S. M., Roth, B. W., & Bremer, K. (2020). SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. Sensors, 20(10), Article 2889. https://doi.org/10.3390/s20102889
Willms, S., Bose, S., Morgner, U., Babushkin, I., Melchert, O., & Demircan, A. (2020). Self-generation of two-frequency molecules via the raman effect. In Frontiers in Optics - Proceedings Frontiers in Optics / Laser Science: part of Frontiers in Optics + Laser Science APS/DLS, FiO 2020 Article FTh1E.2 (Optics InfoBase Conference Papers). OSA - The Optical Society. https://doi.org/10.1364/FIO.2020.FTh1E.2
Wu, Y., Chen, Y., Ma, C., Lu, Z., Zhang, H., Mortazavi, B., Hou, B., Xu, K., Mei, H., Rabczuk, T., Zhu, H., Fang, Z., Zhang, R., & Soukoulis, C. M. (2020). Monolayer C7 N6: Room-temperature excitons with large binding energies and high thermal conductivities. Physical Review Materials, 4(6), Article 064001. https://doi.org/10.1103/PhysRevMaterials.4.064001
Wu, Y., Ma, C., Chen, Y., Mortazavi, B., Lu, Z., Zhang, X., Xu, K., Zhang, H., Liu, W., Rabczuk, T., Zhu, H., Fang, Z., & Zhang, R. (2020). New group V graphyne: two-dimensional direct semiconductors with remarkable carrier mobilities, thermoelectric performance, and thermal stability. Materials Today Physics, 12, Article 100164. https://doi.org/10.1016/j.mtphys.2019.100164
Zámbó, D., Schlosser, A., Rusch, P., Lübkemann, F., Koch, J., Pfnür, H., & Bigall, N. C. (2020). A Versatile Route to Assemble Semiconductor Nanoparticles into Functional Aerogels by Means of Trivalent Cations. Small, 16(16), Article 1906934. https://doi.org/10.1002/smll.201906934
Zenin, V. A., Garcia-Ortiz, C. E., Evlyukhin, A. B., Yang, Y., Malureanu, R., Novikov, S. M., Coello, V., Chichkov, B. N., Bozhevolnyi, S. I., Lavrinenko, A. V., & Mortensen, N. A. (2020). Engineering Nanoparticles with Pure High-Order Multipole Scattering. ACS PHOTONICS, 7(4), 1067-1075. https://doi.org/10.1021/acsphotonics.0c00078
Zhang, Y., Kues, M., Roztocki, P., Reimer, C., Fischer, B., MacLellan, B., Bisianov, A., Peschel, U., Little, B. E., Chu, S. T., Moss, D. J., Caspani, L., & Morandotti, R. (2020). Induced Photon Correlations Through the Overlap of Two Four-Wave Mixing Processes in Integrated Cavities. Laser and Photonics Reviews, 14(9), Article 2000128. https://doi.org/10.1002/lpor.202000128