Real-time stimulated Raman spectroscopy with a non-collinear optical parametric oscillator

authored by
Luise Beichert, Yuliya Binhammer, José R.C. Andrade, Robin Mevert, Ann Kathrin Kniggendorf, Bernhard Roth, Uwe Morgner
Abstract

Ultrafast detection of microplastic particles is becoming a vital problem, as these particles are found in water sources worldwide. Ideally, a live analysis in flow is desirable to directly monitor the water quality for contaminations. Therefore, coherent Raman spectroscopy techniques require fast and broadband tunable lasers to address all relevant spectral regions of the investigated samples. In our work, we combine a high power non-collinear optical parametric oscillator with a real-time stimulated Raman scattering spectroscopy setup. The light source is continously tunable from 700 nm to 1030 nm in less than 10 ms, delivering an average output power of more than 500 mW with sub-ps pulses. We show the immediate observation of mixing processes and the detection of microplastic particles in water solution with a spectral window of more than 2000 cm−1

Organisation(s)
Institute of Quantum Optics
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
Hannover Centre for Optical Technologies (HOT)
External Organisation(s)
Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy im Forschungsbund Berlin e.V. (MBI)
Type
Article
Journal
Optics express
Volume
29
Pages
31499-31507
No. of pages
9
ISSN
1094-4087
Publication date
27.09.2021
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Atomic and Molecular Physics, and Optics
Electronic version(s)
https://doi.org/10.1364/OE.436318 (Access: Open)