Mechanical Properties of Nanoporous Graphenes
Transferability of Graph Machine-Learned Force Fields Compared to Local and Reactive Potentials
- authored by
- Adil Kabylda, Bohayra Mortazavi, Xiaoying Zhuang, Alexandre Tkatchenko
- Abstract
Nanoporous and chemically-bridged graphene nanosheets span a wide chemical space with a broad set of applications in sensing and electronics. Modeling the structure and dynamics of such nanosheets is challenging, as chemical bond making and breaking as well as non-covalent interactions must be captured accurately and on equal footing. Here it is showed that recent graph-based machine-learned force field (MLFF) SO3krates [J. T. Frank et al., Nat. Commun. 15, 6539 (2024)] is able to reliably model the dynamics and mechanical response for a broad class of nanoporous graphenes when trained on accurate density functional theory data that includes long-range many-body dispersion (MBD) interactions. In contrast, local moment tensor potentials and empirical reactive potentials are much less accurate. It is also found that recent MLFFs trained on solid-state datasets must be used with care, since even empirical potentials occasionally yield more accurate results. These findings highlight the potential of properly-trained graph MLFFs in modeling the properties of whole chemical spaces of complex functional materials.
- Organisation(s)
-
Institute of Photonics
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
- External Organisation(s)
-
University of Luxembourg
- Type
- Article
- Journal
- Advanced functional materials
- Volume
- 35
- No. of pages
- 9
- ISSN
- 1616-301X
- Publication date
- 24.03.2025
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials, General Chemistry, Biomaterials, General Materials Science, Condensed Matter Physics, Electrochemistry
- Electronic version(s)
-
https://doi.org/10.1002/adfm.202417891 (Access:
Open)