Mechanical Properties of Nanoporous Graphenes

Transferability of Graph Machine-Learned Force Fields Compared to Local and Reactive Potentials

verfasst von
Adil Kabylda, Bohayra Mortazavi, Xiaoying Zhuang, Alexandre Tkatchenko
Abstract

Nanoporous and chemically-bridged graphene nanosheets span a wide chemical space with a broad set of applications in sensing and electronics. Modeling the structure and dynamics of such nanosheets is challenging, as chemical bond making and breaking as well as non-covalent interactions must be captured accurately and on equal footing. Here it is showed that recent graph-based machine-learned force field (MLFF) SO3krates [J. T. Frank et al., Nat. Commun. 15, 6539 (2024)] is able to reliably model the dynamics and mechanical response for a broad class of nanoporous graphenes when trained on accurate density functional theory data that includes long-range many-body dispersion (MBD) interactions. In contrast, local moment tensor potentials and empirical reactive potentials are much less accurate. It is also found that recent MLFFs trained on solid-state datasets must be used with care, since even empirical potentials occasionally yield more accurate results. These findings highlight the potential of properly-trained graph MLFFs in modeling the properties of whole chemical spaces of complex functional materials.

Organisationseinheit(en)
Institut für Photonik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
University of Luxembourg
Typ
Artikel
Journal
Advanced functional materials
Band
35
Anzahl der Seiten
9
ISSN
1616-301X
Publikationsdatum
24.03.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Allgemeine Chemie, Biomaterialien, Allgemeine Materialwissenschaften, Physik der kondensierten Materie, Elektrochemie
Elektronische Version(en)
https://doi.org/10.1002/adfm.202417891 (Zugang: Offen)