Intelligent on-demand design of phononic metamaterials

verfasst von
Yabin Jin, Liangshu He, Zhihui Wen, B Mortazavi, HW Guo, D Torrent, B Djafari-Rouhani, T Rabczuk, XY Zhuang, Yan Li
Abstract

With the growing interest in the field of artificial materials, more advanced and sophisticated functionalities are required from phononic crystals and acoustic metamaterials. This implies a high computational effort and cost, and still the efficiency of the designs may be not sufficient. With the help of third-wave artificial intelligence technologies, the design schemes of these materials are undergoing a new revolution. As an important branch of artificial intelligence, machine learning paves the way to new technological innovations by stimulating the exploration of structural design. Machine learning provides a powerful means of achieving an efficient and accurate design process by exploring nonlinear physical patterns in high-dimensional space, based on data sets of candidate structures. Many advanced machine learning algorithms, such as deep neural networks, unsupervised manifold clustering, reinforcement learning and so forth, have been widely and deeply investigated for structural design. In this review, we summarize the recent works on the combination of phononic metamaterials and machine learning. We provide an overview of machine learning on structural design. Then discuss machine learning driven on-demand design of phononic metamaterials for acoustic and elastic waves functions, topological phases and atomic-scale phonon properties. Finally, we summarize the current state of the art and provide a prospective of the future development directions.

Organisationseinheit(en)
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Institut für Photonik
Externe Organisation(en)
Universitat Jaume I
CHRU de Lille
Bauhaus-Universität Weimar
Tongji University
Typ
Artikel
Journal
Nanophotonics
Band
11
Seiten
439-460
Anzahl der Seiten
22
ISSN
2192-8606
Publikationsdatum
04.01.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Atom- und Molekularphysik sowie Optik, Elektrotechnik und Elektronik, Biotechnologie
Elektronische Version(en)
https://doi.org/10.1515/nanoph-2021-0639 (Zugang: Offen)